EGC220 Class Notes 2/24/2023

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

Test 1:

- Number systems
- Convert any base to any base
- Quick conversion between base $2,4,8$, and 16
- Add, subtract, multiply in any base
- Logic gate implementation of a Boolean function
- Boolean properties and laws
- Simplification of Boolean algebra using Boolean laws
- Representing Boolean functions in terms of
- Sum of min-terms, product of max-terms, standard sum of products, standard product of sums, minimum sum of products, minimum product of sums
- Representing Boolean functions using all NAND or NOR gates.

Simplification using K-map (up to 5 variables)

- SOP, POS, Standard SOP and POS, Min. SOP and POS

Design of combinational circuits

1. Given $\langle=F(w, x, y, z)=\Pi M(0,1,3,5,13)$
d. Write the complete truth table for $Y=f(w, x, y, z)$.
2. Write $\dot{Y}=f(w, x, y, z)$ in standard POS form and standard SOP form.
(3. Write $F=f(w, x, y, z)$ in sum of min-terms and product of max terms.

Use a Karnaugh map to derive a hihinizized Pos and minimized SOP

$$
\begin{aligned}
& \bar{F}=x \bar{y} z+\bar{w} \\
& F=(\bar{x}+y+\bar{z})(w+x+y)(w+x+\bar{x}) \overline{\bar{y}}+\bar{w} \bar{x} z \\
& \mu_{\text {in }}
\end{aligned}
$$ Min.po.s.

non-essential

1. Given $Y=f(w, x, y, z)=\Pi M(0,1,3,5,13)$,
2. Write the complete truth table for $Y=f(w, x, y, z)$.
3. Write $Y=f(w, x, y, z)$ in standard POS form and standard SOP form.
4. Write $Y=f(w, x, y, z)$ in sum of min-terms and product of max terms.

5. Simplify the following Boolean functions using four variables K-maps and express your answer in minimum sum of products and minimum product of sums.
a. $F(A, B, C, D)=\sum m(0,1,2,4,5)+d(3,6,7)$

prodvet of Max terms
b. $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W})=\Pi \mathrm{M}\left(0,6,8, \frac{13}{z}(14)+\mathrm{d}(2,4,10)+* \operatorname{Sum}\right.$ of m_{1} in terms

$$
F=\operatorname{cm}(1,3,5,7,9,11,12,13)
$$

$$
\begin{aligned}
& \text { +d } 2,4,10) \\
& M_{\text {in }} \text { S.op } \\
& F=\underline{z} w+\bar{x} \underline{w}+\bar{y} \underline{y}+y \bar{z} \bar{w} \\
& \text { Min. P.O.S } \\
& \bar{F}=z \bar{w}+\bar{y} \bar{w}+x y \bar{z} w \\
& F=(\bar{z}+w)\left(y^{\prime}+\omega\right)(\bar{x}+\bar{y}+z+\bar{w})
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { products and minimum /product of sums. } \\
\text { b. } \mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=П \mathrm{M}(, 6,8,13,14)
\end{array} \\
& F=シ \omega+z w+\bar{X} W+ \\
& y \underset{W}{ } \\
& \text { C. FA, B, C, D })=\sum_{m(4,6,7,8,12,15)+d(2,3,5,10,11}, \\
& F=C+B \bar{D}+A \bar{D} \\
& \bar{F}=\bar{A} \bar{B}+\bar{C} D \\
& F=(A+B)(C+\bar{D})
\end{aligned}
$$

3. For $F(A, B, C, D, E)=A^{\prime} B^{\prime} C+A^{\prime} C E+A^{\prime} B E+A B E+A^{\prime} B^{\prime} C D \quad\left(\right.$ Note: $\left.A^{\prime}=A\right)$ determine

g. Minimum products of sums.
(Note: $A^{\prime}=A$) determine g. Minimum products of sums.

$$
\begin{aligned}
& \text { Min. sol } \rightarrow N A N D \\
& F=A \bar{B} C+A C D+B D
\end{aligned}
$$

Min. POSS \rightarrow NOR

